Rank of Matrix Calculator

Calculate the rank of a 2×2 matrix with complex numbers online for free using our accurate Rank of Matrix Calculator.

Matrix (3×3)
A1
A2
A3
B1
B2
B3
C1
C2
C3
Matrix Rank
3
StepDescription
1Input matrix is [[1+i, 2, 3], [4, 5-i, 6], [7, 8, 9-i]].
2Apply Gaussian elimination to reduce to row echelon form.
3Matrix: [[1+i, 2, 3], [4, 5-i, 6], [7, 8, 9-i]]. First row pivot: 1+i.
4Eliminate below pivot: Row 2 = Row 2 – (4/(1+i)) * Row 1.
5Compute multiplier: 4/(1+i) = (4(1-i))/(1+i)(1-i) = (4-4i)/2 = 2-2i.
6Row 2 = [4, 5-i, 6] – (2-2i) * [1+i, 2, 3] = [0, 1+i, 0].
7Eliminate below pivot: Row 3 = Row 3 – (7/(1+i)) * Row 1.
8Compute multiplier: 7/(1+i) = (7(1-i))/(1+i)(1-i) = (7-7i)/2 = 3.5-3.5i.
9Row 3 = [7, 8, 9-i] – (3.5-3.5i) * [1+i, 2, 3] = [0, -3+4i, 0.5-0.5i].
10Matrix: [[1+i, 2, 3], [0, 1+i, 0], [0, -3+4i, 0.5-0.5i]]. Second row pivot: 1+i.
11Eliminate below pivot: Row 3 = Row 3 – ((-3+4i)/(1+i)) * Row 2.
12Compute multiplier: (-3+4i)/(1+i) = ((-3+4i)(1-i))/(1+i)(1-i) = (1+7i)/2 = 0.5+3.5i.
13Row 3 = [0, -3+4i, 0.5-0.5i] – (0.5+3.5i) * [0, 1+i, 0] = [0, 0, 0.5-0.5i].
14Row echelon form: [[1+i, 2, 3], [0, 1+i, 0], [0, 0, 0.5-0.5i]].
15Count non-zero rows: 3 rows are non-zero.
FinalRank of the matrix is 3.
Please enter valid complex numbers (e.g., “3+2i”, “-1-i”, “5”, “i”, “-i”) in all fields.

➤ Related